Data Science Master Program - Full Course Reading Time: 5 minutes

Statistics Essentials for Analytics

All the topics in the following section will explain the basics of what it is, which scenario you want to use, What math behind it, How to implement with an analytic tool, what inferences you are getting from the final result.

Data Science with Python

Module 1: Introduction to Data Science

Module 2: Introduction to Python

Module 3: Python Basics

Module 4: Python Packages

Module 5: Importing data

Module 6: Manipulating Data

Module 7: Statistics Basics

Data Science with R Language

Module 1: Introduction to Data Science Methodologies

Module 2: Correlation / AssociationRegressionCategorical variables

Module 3: Data Preparation

Module 4: Logistic Regression

Module 5: Cluster AnalysisClassification Models

Module 6: Introduction and to Forecasting Techniques

Module 7: Advanced Time Series Modeling

Module 8: Stock market prediction

Module 9: Pharmaceuticals

Module 10: Market Research

Module 11: Machine Learning

Module 12: Fraud Analytics

Module 13: Text Analytics

Module 14: Social Media Analytics

Tableau

Module 1: Tableau Course Material

Module 2: Learn Tableau Basic Reports

Module 3: Learn Tableau Charts

Module 4: Learn Tableau Advanced Reports

Module 5: Learn Tableau Calculations & Filters

Module 6: Learn Tableau Dashboards

Module 7: Server



Meet Ananth Tirumanur. Hi there 👋

I work on projects in data science, big data, data engineering, data modeling, software engineering, and system design.

Connect with me:

My Resources:

Languages and Tools:

AWS, Bash, Docker, Elasticsearch, Git, Grafana, Hadoop, Hive, EMR, Glue, Athena, Lambda, Step Functions, Airflow/MWAA, DynamoDB, Kafka, Kubernetes, Linux, MariaDB, MySQL, Pandas, PostgreSQL, Python, Redis, Scala, SQLite